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Abstract Szász and Telcs (J. Stat. Phys. 26(3), 1981) have shown that for the diffusively
scaled, simple symmetric random walk, weak convergence to the Brownian motion holds
even in the case of local impurities if d ≥ 2. The extension of their result to finite range
random walks is straightforward. Here, however, we are interested in the situation when
the random walk has unbounded range. Concretely we generalize the statement of Szász
and Telcs (J. Stat. Phys. 26(3), 1981) to unbounded random walks whose jump distribution
belongs to the domain of attraction of the normal law. We do this first: for diffusively scaled
random walks on Zd (d ≥ 2) having finite variance; and second: for random walks with
distribution belonging to the non-normal domain of attraction of the normal law. This result
can be applied to random walks with tail behavior analogous to that of the infinite horizon
Lorentz-process; these, in particular, have infinite variance, and convergence to Brownian
motion holds with the superdiffusive

√
n logn scaling.

Keywords Random walk · Local impurities · Infinite horizon · Weak convergence ·
Brownian motion · Local limit theorem

1 Introduction

Our goal in this paper is to show that local impurities do not influence the—appropriately
scaled—weak limit behavior of random walks on Zd (d ≥ 2). In [15], D. Szász and A. Telcs
have shown that for the diffusively scaled, simple symmetric random walk, weak conver-
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gence to the Brownian motion holds even in the case of local impurities if d ≥ 2. The ex-
tension of their result to finite range random walks is straightforward. Here, however, we
are interested in the situation when the random walk has unbounded range (for simplicity,
we always assume that the distribution of the jumps is centered, i.e. their expected value
is 0). Concretely we generalize the statement of [15] to unbounded random walks whose
jump distribution belongs to the domain of attraction of the normal law. We do this first: for
diffusively scaled random walks on Zd d ≥ 2 having finite variance, and second: for random
walks with distribution belonging to the non-normal domain of attraction of the normal law
(we note that, if d = 1, this domain consists of distributions which have infinite variance but
L(x) = ∫

|u|≤x
u2dF(u) → ∞ is a slowly varying function; in this case partial sums converge

to the Gaussian law by using the slightly superdiffusive scaling Bn, where Bn is determined
by the relation nL(Bn)

B2
n

→ 1. For the reader’s convenience, a summary of related definitions
and results can be found in the Appendix).

The idea of [15] served as an intuitive background for proving that the diffusively scaled,
locally perturbed, planar, finite horizon Lorentz process converges weakly to the Brownian
motion (cf. [2, 6, 16]). Our second result is hoped to provide a starting point to prove the
corresponding statement for the infinite horizon Lorentz process, recently a widely studied
object (cf. [3–5, 11, 17]). (In fact, for stochastic models of the infinite horizon Lorentz
processes other types of perturbations should also be taken into account, an object of future
research.)

In Sect. 2, we are going to state our general theorems, Sect. 3 contains some lemmas and
definitions, and Sect. 4 proves the theorems using these. The proofs of the lemmas can be
found in Sect. 5. Finally, Sect. 6 is devoted to comments.

2 Main Results (in Particular, the Generalization of [15] to the Case of Infinite
Horizon)

The main difficulty in generalizing Theorem 1 of [15] to the case of random walks with
unbounded jumps is that in this case the coupling argument of [15] breaks down. Though
the structure of our proofs is similar to that used in [15], for avoiding the aforementioned
difficulty one needs novel ideas (as seen, in particular, in the proofs of our lemmas in Sect. 5).

To avoid unnecessary complications we suppose throughout the whole paper: (i) the di-
mension d ≥ 2; (ii) the aperiodicity of the random walk (i.e. if we denote by Pn(z → x)

the n-step transition probability of the random walk, then we assume: if there is an m such
that Pm(z → x) > 0, then we can choose n0 (which may depend on x and z) such as for all
n > n0, Pn(z → x) > 0). Finally ‖.‖ denotes the maximum (L∞) norm for vectors.

Definition 1 Let y1, y2, . . . be independent, identically distributed (or briefly iid) random
variables with

P (yi = y) = P(y), y ∈ Z
d .

The stochastic process Y0, Y1, . . . defined by

Yn = y0 +
n∑

i=1

yi,

where y0 = z ∈ Z
d , is a random walk (or briefly RW). The measure defined by this random

walk will be denoted by P z, and the transition probabilities of the process will be denoted

by P (x, y) (P(x, y) = P(0, y − x)
def= P(y − x)).
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As usual, the random walk orbit determines a continuous time stochastic process
ηY

n : [0,1] → R with continuous trajectories in the following way: ηY
n (t) = n−1/2Ynt if

t = 0, 1
n
, 2

n
, . . . ,1, . . . , and it is linear between these points. It is well known that if P is

such that second moments of the jumps are finite, i.e.

∑

x∈Zd

P (x)‖x‖2 < +∞,

then, as n → ∞, ηY
n converges weakly to W∑(t), a d-dimensional Wiener-process in

the space Cd [0,∞) (with d × d covariance matrix
∑

equal to that of the random vec-
tor yi ). Weak convergence in Cd [0,∞) will be denoted by ⇒. The proof of this result
(d-dimensional Donsker functional central limit theorem) can be found in [18], p. 106, The-
orem 4.3.5.

Remark 1 Since our arguments that show weak convergence in Cd [0,1] also imply that
in Cd [0,∞) in a standard way (cf. [10]), we often will only formulate our statements for
Cd [0,1].

Definition 2 Let P be a transition probability matrix on Z
d (so P (x, y) is not necessarily

equal to P (0, y − x)). We call the time-homogeneous Markov process Xi , i = 0,1 . . . with
transition probabilities P a random walk in an inhomogeneous medium.

Definition 3 If Xn is a random walk in an inhomogeneous medium and there exists a finite
set A ⊂ Z

d such that for all u /∈ A, v ∈ Z
d , P (u, v) = P (u, v), then we call Xn a random

walk with local impurities (or briefly RWwLI ).

Let us define a directed graph G = (Zd ,E), where (E = {(u, v)|P (u, v) �= 0}). In both
our theorems we assume:

Assumptions

(i) Let Xn be a RWwLI , where the starting point z lies in the infinite, strongly connected
component Q of G (a directed graph Q is strongly connected if there is a directed path
from each vertex to each other vertex in Q, a strongly connected component of G is a
maximal strongly connected subgraph); for simplicity, assume also that 0 ∈ Q.

(ii) Assume that there is an ε > 0 that for all impurities, the jump from the impurity has a
distribution whose εth moment exists (i.e. E(‖J‖ε) < +∞, where J is the jump from
an impurity).

Theorem 1 Define ηX
n : [0,1] → R analogously to ηY

n (t). Suppose that the second moment
of the jumps (with respect to P ) exists, their expected value is 0 and the RW is aperiodic.
Then, as n → ∞,

ηX
n (t) ⇒ W∑(t), t ∈ [0,1].

Definition 4 We call a random variable (or random vector) X with E‖X‖2 = ∞ B-type if
its expected value is 0, and it belongs to the domain of attraction of the normal law. (As
a consequence, for partial sums of iid B-type summands the scaling is larger than

√
n, i.e.

limn→∞ Bn√
n

= ∞.) The reader is reminded that some facts from classical limit theory of
probability, e. g. the definition of domain of attraction, are collected in the Appendix.
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Define ηX′
n : [0,1] → R as

ηX′
n (t) = B−1

n Xnt if t = 0,
1

n
,

2

n
, . . . ,1,

and let it be linear between these points.

Theorem 2 Suppose that the distribution of the RW jumps is B-type with scaling Bn, their
expected value is 0 and the RW is aperiodic. Then, as n → ∞,

ηX′
n (t) ⇒ W∑(t), t ∈ [0,1].

Remark 2 Of course, it may also occur that partial sums of iid random vectors would ‘nat-
urally’ scale differently in different directions. This is, for instance, the case in Theorem 7
of [3, 4]: they consider a two-dimensional periodic Lorentz process where all the collision-
free trajectories are parallel to the x-axis and the scaling is

√
n logn in the direction of the

x-axis whereas it is
√

n in the direction of the y-axis. The reader can convince him/herself
that general case is analogous: in some directions one has to use the strongest scaling and
then in some orthogonal directions the next to the strongest ones, etc. and our methods are
also applicable in this situation.

Remark 3 For d = 1, Theorem 1 is not true; cf. [8].

Remark 4 In Theorem 1,
∑

is the same as the covariance matrix of the jumps of the RW
(having distribution P ). For Theorem 2,

∑
is still determined by the distribution of the RW

jumps (see Theorem 4.2 of [12] in the Appendix).

3 Preliminary Notes to the Proofs of Theorems 1 and 2

Before the rigorous discussion we want to show the idea of the result. If d ≥ 3, then for the
simple symmetric random walk, Pólya’s theorem says that with a probability 1, the number
of returns into the origin—or into a finite set A—is finite. This can be simply proven for
any non-degenerate random walk. For instance, for d = 3, once the Local Central Limit
Theorem ([9], p. 25) holds, stating that the probability of return into the origin in the nth
step is pn = O(n−3/2), then the series pi is summable. Thus the expected number of returns
is finite. Therefore, in case of a finite modification, the random walk leaves the set A after a
finite time. Consequently, in the limit, the effect of the modification vanishes.

Much more interesting is the case d = 2, when the random walks we are interested in
may also be recurrent. Again, once for some sequence {Bn > 0}n≥1

Yn

Bn
has a limit law, then

under some additional conditions, its local version also holds. It implies that the expected
number of returns into a finite set until time n is O(

∑n

j=0
1

B2
j

) = O(
∑n

j=0
1
j
) which is always

O(logn) = o(
√

n). The expected time spent in A during one visit is uniformly bounded and
since the normalizing factor is at least of order

√
n, the previous conclusion is also true.

Now, we are going to start with definitions and our key lemma (its proof can be found in
Sect. 5).
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Definition 5 The impurities are local, so we can select and fix an N ∈ N such that all the
impurities lie in the cube

KN =
[

−N − 1

2
;N + 1

2

]d

⊂ R
d i.e., A ⊂ KN.

Definition 6

ρn =
n∑

i=0

1Xi∈KN

i.e. the time spent by the RWwLI in KN until time n.

Lemma 1 If d ≥ 2, and z ∈ Q, then, as n → ∞,

Ez(ρn) = O(logn).

4 Proofs of Theorems 1 and 2 Assuming Lemma 1

Proof of Theorem 1 We are going to write the proof for dimension d ≥ 2 (even though the
d ≥ 3 case could be proven in a simpler way as this was indicated before). With the help of
Xn we define a new process Zn. Let Z0 = z and Zn+1 − Zn = Xn+1 − Xn if Xn /∈ KN , while
if Xn ∈ KN , then let Zn+1 − Zn be independent of X0,X1, . . .Xn and of Z0,Z1, . . .Zn, and
let P (Zn,Zn+1) = P (Zn,Zn+1). Then it is clear that Zn is a random walk with transition
matrix P . Let’s define ηZ

n (t) analogously as ηY
n (t) in Sect. 2, then

ηZ
n (t) ⇒ W∑(t).

Thus, because of the piecewise linearity of ηX
n (t) and ηZ

n (t), in order to establish that

ηX
n (t) ⇒ W∑(t)

also holds it is sufficient to show that

n−1/2 · sup
t∈[0,1]

‖X[nt] − Z[nt]‖ → 0 as n → ∞.

Observe that

n−1/2 · sup
t∈[0,1]

‖X[nt] − Z[nt]‖ ≤ n−1/2 ·
n∑

i=1

‖(Xi − Xi−1) − (Zi − Zi−1)‖

= n−1/2 ·
∑

i:Xi−1∈KN

‖(Xi − Xi−1) − (Zi − Zi−1)‖.

Let us define a sequence of random variables Jk = ‖kth step from KN‖, k ∈ Z
+. Then

our task is to show that

n−1/2 ·
ρn∑

k=1

Jk ⇒ 0.
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First, we will show this for the case when KN consists of only one point, and then we show
it for the general case.

In the one—point case, Jk are independent and they have the same distribution, and, by
assumption, has E(J ε

k ) < ∞ for some ε > 0 (by a simple argument we can also suppose that
ε < 1). Let us call E(J ε

k ) = K , then by Markov—inequality, we have P (J ε
k > h) < K/h

(h > 0), therefore P (Jk > h) < K/hε . Let us define a new random variable J ′ as P (J ′ >

h) = 1 if h ≤ 0 and P (J ′ > h) = min(1,K/hε) if h > 0. Then we define the sequence J ′
k

with the same distribution as J ′, and can see that for every γ ≥ 0,

P

(

n−1/2 ·
ρn∑

k=1

Jk > γ

)

≤ P

(

n−1/2 ·
ρn∑

k=1

J ′
k > γ

)

therefore it is sufficient to show that the latter converges to zero as n → ∞. Then we can
easily verify that this distribution of J ′ belongs to the domain of attraction of a stable law
with parameter α = ε. Therefore if we sum k random variables of this distribution, and
denote the sum by Sk , then Sk

k1/ε ⇒ S(ε,β), where S(ε,β) is a stable law.
Now we can write

P

(

n−1/2 ·
ρn∑

k=1

J ′
k > γ

)

≤ P

(

n−1/2 ·
ρn∑

k=1

J ′
k > γ

∣
∣
∣ρn > log2(n)

)

· P (
ρn > log2(n)

)

+ P

⎛

⎝n−1/2 ·
[log2 n]∑

k=1

J ′
k > γ

⎞

⎠ .

By Lemma 1, E(ρn) = O(logn) = o(log2 n). Hence the first term tends to zero by the
Markov—inequality. Therefore we only need to show that the second term tends to zero
too.

P

⎛

⎝n−1/2 ·
[log2 n]∑

k=1

J ′
k > γ

⎞

⎠ = P

⎛

⎝

⎛

⎝log−2/ε(n) ·
[log2 n]∑

k=1

Jk

⎞

⎠ · n−1/2

log−2/ε(n)
> γ

⎞

⎠ .

We have P (log−2/ε(n) · ∑[log2 n]
k=1 Jk > x) → P (S(ε,β) > x) for every x > 0 as n → ∞, so

it is obvious that P (n−1/2 · ∑[log2 n]
k=1 J ′

k > γ ) → 0 as n → ∞.
The second case is when KN consists of several points. First we denote by Vn the set

x1, x2, . . . xn of the first n points in KN hit by Xj . Let Wn be the set of all possible Vn that
occur with probability greater that zero. Then we can write

P

(

n−1/2 ·
ρn∑

k=1

Jk > γ

)

=
∑

Vn∈Wn

P

(

n−1/2 ·
ρn∑

k=1

Jk > γ

∣
∣
∣Vn

)

P (Vn).

Now it is sufficient for us to show that P (n−1/2 · ∑ρn

k=1 Jk > γ |Vn) → 0 as n → ∞ for every
Vn ∈ Wn.

If we fix Vn, then Jk are conditionally independent. Moreover, we can see that Jk|Vn =
Jk|{xk, xk+1}, so it only really depends on the kth and (k + 1)th step in KN . For fixed xk ,
Jk|xk has finite εth moment for some ε > 0 (independent of k and xk). If

K = max
x∈KN ∩Q

E(J ε
k |xk = x),
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then we see that P (Jk > h|xk) < K/hε . But

P (Jk > h|xk) =
∑

x∈KN

P (xk+1 = x|xk) · P (Jk > h|xk, xk+1).

P (xk+1 = x|xk) is independent of k, it only depends on the two points in KN , so it has at
most |KN |2 different values. We only need to consider cases when it is not zero, because if
it is zero, than it can never occur in any Vn ∈ Wn. Therefore there is a positive p > 0 such
that P (xk+1 = x|xk) > p if it is not zero. So

P (Jk > h|Vn) <
K

phε
.

From here, because of the conditional independence of Jk , we can follow the proof of the
one—point case. �

Remark 5 The condition of existence of εth moment seems difficult to avoid, since if we
take the case of a distribution for J such that the cumulative distribution function has the
form F(x) = 1 − 1

log2(e+x)
for x > 0 and 0 for x ≤ 0, then we can observe the sum of

logn independent random variables of this kind, divided by
√

n, will not converge to zero.
Nevertheless, it is possible that in this case the random walk returns less frequently than
O(logn) times in n steps, but this seems difficult to prove.

Proof of Theorem 2 The proof is very similar to that of Theorem 1, this time we define Zn

the same way as we have done in the previous proof, only now we define ηZ
n (t) = B−1

n Znt if
t = 0, 1

n
, . . . ,1, and linear between these points, then

ηZ
n (t) ⇒ W(t) for t ∈ [0,1].

From Lemma 1 we know that Ez(ρn) = O(logn), and using similar arguments as in the
previous proof we can show that B−1

n sup0≤t≤1 ‖X[nt] − Z[nt]‖ tends to zero in probability as
n → ∞. This proves the statement of our theorem. �

5 Proofs of Lemmas

The proofs of Theorems 1 and 2 are based on Lemma 1. In order to prove this, we need a
few new definitions and lemmas.

Definition 7 For all z ∈ KN ∩ Q, consider a RWwLI such that X0 = z. Denote

τz = min{k ∈ N | Xk /∈ KN }
i.e. τz is the first exit time of the RWwLI from the set KN .

Definition 8 Denote by νn the number of pure 1 blocks in the sequence

1X0∈KN
,1X1∈KN

, . . . ,1Xn∈KN

i.e. νn is the number of entrances into KN until time n.
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We also define the slightly different random variable νn: it is the number of pure 1 blocks
in the sequence

1x0∈KN
,1x1∈KN

, . . . ,1xm∈KN
, (1)

where m is chosen so that the number of 0s in the sequence (1) equals n; i.e. νn is the number
of entrances into KN until the first n steps outside KN .

Definition 9 Denote by B ⊂ Q a finite connected set, i.e., for all x, y ∈ Q \ B there is a
directed path from x to y in the subgraph on Q \ B . Let

SB = min{k ∈ N | Xk ∈ B}
and

TB = min{k ∈ N | Yk ∈ B}.
These are called hitting times of B by the processes Xn and Yn, respectively.

Lemma 2 Let H ⊂ (Q \ KN) be a finite set. Then there exists a constant CH,KN
> 0 (inde-

pendent of z and n), such that for all z ∈ H ,

P z(TKN
> n)

P 0(T{0} > n)
> CH,KN

.

We shall denote by Ez (and Ez) expectations with respect to Pz (and P z).

Lemma 3 If d ≥ 2, then there is a H ⊂ (Q \ KN) finite set, and a DH,KN
> 0 constant

(independent of z and n), such that for every z ∈ Q,

Ez(νn) ≤ Ez(νn) ≤ DH,KN

minb∈H P b(TKN
> n)

.

Corollary 1 If d ≥ 2, then, as n → ∞, Ez(νn) = O(logn).

Now we can start the proofs.

Proof of Lemma 2 We know that the following limit exists for all z ∈ Q \ KN :

0 < lim
n→∞

Pz(TKN
> n)

P 0(T{0} > n)
< ∞.

This is a special case of the Kesten-Spitzer Ratio Limit Theorem, for more details, see [14],
p. 165. From this, the lemma follows immediately. �

Proof of Lemma 3 By the definition it follows that νn ≥ νn, so Ez(νn) ≥ Ez(νn), and we
only need to prove the inequality for νn.

Let us denote by S the sequence X0,X1,X2, . . . , and create a new sequence S ′ =
{X0,X1, . . .} by discarding every element of S that are in KN . Then we define φ : Z

+ ∪ 0 →
Z

+ ∪ 0 such that the index of Xi in the original sequence S is φ(i) (it is easy to see that
φ(i) ≥ i). Finally let the set J be the following:

J = {j : Xφ(j)+1 ∈ KN }.
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Then J is the set of j indices such that we jump to KN from the element corresponding to
Xj in S. We define a complete system of events Ai , i = 0,1, . . . , n and Ac:

Ai = {i ∈ J, {i + 1, . . . , n} and J are disjoint},
Ac = {{1,2, . . . , n} and J are disjoint}.

So the meaning of Ai is that from the first n steps outside KN in the sequence S, the last
step when we jump to KN is the ith. Ac corresponds to the event that we do not get to KN

in the first n steps outside KN (thus Tz(KN) > n).
We denote the complement of KN by KN . Then

1 = Pz(A
c) +

n∑

i=0

Pz(Ai) ≥
n∑

i=0

Pz(Ai)

≥
n∑

i=0

∑

b∈KN

Pz(i ∈ J )Pz(Xi+1 = b|i ∈ J )Pb

(
SKN

> n − i − 1
)
. (2)

Let K∗
N be the set of those x ∈ Q ∩ KN points, from which we can jump out of KN with

positive probability. First we are going to deal with the case when there is such a b̃ ∈ (Q \
KN) point that we can jump from every x ∈ K∗

N to b̃ with positive probability (in 1 step).
Then let Pm = minx∈K∗

N
P (x, b̃), thus if we only take the term of b̃ in (2), in the summation

to b, (and by using that Pb(SKN
> n − i − 1) ≥ Pb(SKN

> n)):

1 ≥
n∑

i=0

Pz(i ∈ J )Pb̃

(
SKN

> n
) · Pz(Xi+1 = b̃|i ∈ J )

≥
n∑

i=0

Pz(i ∈ J )Pb̃

(
SKN

> n
)
Pm. (3)

Moreover,
∑n

i=0 Pz(i ∈ J ) = E(νn), so by the choice H = {b̃} and DH,KN
= 1/Pm the state-

ment of the lemma is true (we have also used that Pb(SKN
> n) is independent of the transi-

tion probabilities inside KN , so P b(TKN
> n) = Pb(SKN

> n)).
The second case is when no such b̃ point exists. Now for all x ∈ K∗

N , we choose such a
bx ∈ (Q \ KN) that we can jump there with positive probability, i.e. P (x, bx) > 0. Let H be
the set of these bx points. It is evident from the construction that there is a constant Pm > 0
such that jumping out of KN , we get to a point in H with greater or equal probability than
Pm (Pm = minx∈K∗

N
P (x, bx) is a good choice). Then

1 ≥
n∑

i=0

∑

b∈KN

Pz(i ∈ J )Pz(Xi+1 = b|i ∈ J )Pb

(
SKN

> n − i − 1
)

≥
n∑

i=0

Pz(i ∈ J )
∑

b∈H

Pb

(
SKN

> n
)
Pz(Xi+1 = b|i ∈ J )

≥
n∑

i=0

Pz(i ∈ J )min
b∈H

Pb

(
SKN

> n
)∑

b∈H

Pz(Xi+1 = b|i ∈ J )



Locally Perturbed Random Walks with Unbounded Jumps 1125

=
n∑

i=0

Pz(i ∈ J )min
b∈H

Pb

(
SKN

> n
)
Pz(Xi+1 ∈ H |i ∈ J )

≥
n∑

i=0

Pz(i ∈ J )min
b∈H

Pb

(
SKN

> n
)
Pm.

As in the previous case, we get the statement of our lemma with DH,KN
= 1/Pm. �

Proof of Corollary 1 The outline of the proof is similar to pp. 355–356, [7], but here we
prove it to random walk, instead of simple symmetric random walk. The idea to use an
argument based on this article comes from Péter Nándori.

First, we’re going to suppose that the distribution has second moment. Then the proba-
bility of returning to the origin in the nth step is (by the Local Central Limit Theorem, [9],
p. 25):

u(n) = 1/
(
(2π)d/2

√
detΓ · nd/2

)
+ o

(
1/nd/2

) = g/nd/2 + o
(
1/nd/2

)
. (4)

Here Γ is the covariance-matrix (size d × d), and g = 1/((2π)d/2
√

detΓ ).
Denote by R(n) the probability that the random walk does not return to the origin in n

steps, i.e. using Definition 9,

R(n) = P 0(T{0} > n),

then
n∑

k=0

u(k)R(n − k) = 1.

If d ≥ 3, then

U =
∞∑

n=0

u(n) < ∞.

Let R = limn→∞ R(n), which exists because R(n) is bounded and monotone. For 1 ≤ k ≤ n

R(n − k)

k∑

i=0

u(i) +
n∑

i=k+1

u(n) ≥ 1.

If k → ∞ and n − k → ∞, then

R(n − k) · U ≥ 1 + o(1)

so

R ≥ 1

U
.

But R(n) is monotone decreasing, so

R(n) ≥ 1

U
.
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If d = 2, then by substituting (4) in the place of u(k), we get

u(0) + u(1) + · · · + u(n) = g logn(1 + o(1))

using that R(n) is decreasing

R(n)g logn ≤ 1 + o(1). (5)

We know that for 0 < k < n,

R(n − k)[u(0) + · · · + u(k)] + u(k + 1) + · · · + u(n) ≥ 1.

If k and n tends to infinity, then

R(n − k) · g log(k)(1 + o(1)) + g(1 + o(1)) log
n

k
≥ 1.

Let k = n − [n/ logn], then

R(n − k)g log(n − k)(1 + o(1)) + o(1) ≥ 1.

This and (5) yields

R(n) = 1 + o(1)

g logn
.

If the distribution is B-type, then in d dimensions, according to the Local Central Limit
Theorem in [12] (see Appendix), there is such a Bn series and c = g(0) positive constant
such that

u(n) = c

Bd
n

+ o

(
1

Bd
n

)

.

We see that limn→∞ Bn√
n

> 0. Let us call Cn = ∑n

k=0 u(k) = ∑n

k=0
c

B2
n

, then it is monotone

increasing. For d = 2, we have Cn = O(logn), and for d ≥ 3, Cn = O(1).
Now, depending on whether limn→∞ Cn = U < +∞ or limn→∞ Cn = +∞, we have

two cases. In the first case, using the same argument as before, we can show that R(n) ≥
1
U

. In the second one, we also use the same argument as previously: using the fact that∑n

k=0 u(k)R(n − k) = 1, we can easily see that

R(n)Cn ≤ 1 + o(1). (6)

We know that for 0 < k < n,

R(n − k)[u(0) + · · · + u(k)] + u(k + 1) + · · · + u(n) ≥ 1.

If k and n tends to infinity, then

R(n − k)Ck(1 + o(1)) + (Cn − Ck) ≥ 1.

Let k = n − [n/Cn], then

Cn − Ck ≤ c(logn − log(n − [n/Cn]))(1 + o(1)) = c log

(
1

1 − 1/Cn

)

(1 + o(1)) = o(1).
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On the other hand, we see that

Ck − Cn−k ≤ (log(n − [n/Cn]) − log([n/Cn]))(1 + o(1))

= log(Cn − 1)(1 + o(1)) = o(Cn) = o(Ck) = o(Cn−k),

therefore we can write

R(n − k)Cn−k(1 + o(1)) + o(1) ≥ 1.

This and (5) yields

R(n) = P 0(T{0} > n) = 1 + o(1)

Cn

.

From these, Lemmas 2 and 3, we get that

limn→∞P 0(T{0} > n)Ez(νn) ≤ limn→∞
DH,KN

P 0(T{0} > n)

minb∈H P b(TKN
> n)

< ∞,

Ez(νn) = O(logn). �

Proof of Lemma 1

Definition 10 Let ξi be the time spent in KN by XN during the ith visit, which equals the
length of the ith ones block in the series 1x0∈KN

,1x1∈KN
, . . . .

The difficulty in the proof is that ξi are dependent, so they are hard to handle directly.
For this reason, we’re going to work with the conditional probabilities in function of the
entrance/exit points.

Definition 11 Let uk be the point of the kth entrance to KN (uk ∈ KN ), and vk the last point
in KN before the kth exit from KN . Let us denote Un = {uk}n

k=1 and Vn = {vk}n
k=1. Then Un

and Vn are random vectors taking values in Kn
N .

There exists such a K < ∞ that Ez(ξk|uk, vk) ≤ K because the expected value only
depends on the value of uk and vk (but does not depends on k), and there are at most
|KN |2 u,v pairs, and the expected value is bounded for all of them, so we can choose K

as the maximum of these. In the following, we’ll use the shorthand notation for summation
∑

Un,Vn

def= ∑
Un∈Kn

N
,Vn∈Kn

N
,

Ez(ρn) ≤ Ez

(
νn∑

i=1

ξi

)

=
n∑

k=0

E

(
k∑

i=1

ξi |νn = k

)

P (νn = k)

=
n∑

k=0

k∑

i=1

∑

Un,Vn

E(ξi |νn = k,ui(Un), vi(Un))P (νn = k,Un,Vn)

≤
n∑

k=0

∑

Un,Vn

K · k · P (Un,Vn, νn = k) = K

n∑

k=0

k · P (νn = k) = K · E(νn).

Here we have used that E(ξi |ui, vi, νn = k) = E(ξi |ui, vi) ≤ K , this is true because νn is
independent of the time spent inside KN . Now it is clear that Ez(ρn) = O(logn). �
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6 Remarks

1. This paper is based on the work done for D. Paulin’s bachelor’s thesis in 2009 at Budapest
University of Technology and Economics.

2. The conditions for our Theorem 1 are quite general. With some technical work, it could
be easily shown that Theorem 1 also holds for periodic random walks, the same way it is
done in [15].

3. In relation to Theorem 2, we conjecture that, analogously to the finite horizon case, the
weak limit of the locally perturbed Lorentz-process with infinite horizon is the same
Brownian motion as it is that of the periodic one.

4. If for the distribution of the jumps in the random walk,

sup
k∈R+

(k. moment exists) = α,

with α ∈ [1,2), and the tail of the random walk satisfies some criteria (see [18], p. 114,
Theorem 4.5.1), then we will converge to a stable distribution with parameter α, and the
normalizing factor will not be n1/2, but n1/αL0(n), L0 being a slowly varying function.
We can apply the local limit theorem for stable distributions, Theorem 6.1 of [12], to the
returns to the origin, P (Y (1)

n = 0) = O(n−1/α). Using the same theorem we get that in two
dimensions, if the jump belongs to the domain of attraction of the 2 dimensional stable
law with parameter α, then P (Y (2)

n = 0) = O(n−2/α). α ∈ [1,2), so
∑∞

n=0 P (Y (2)
n = 0) <

∞, and thus the random walk is transient. From this, the convergence to a Lévy—process
can be proven.

Acknowledgements The authors are grateful to Péter Nándori for his constant support and invaluable
comments. We also express our sincere thanks to the referees for their careful reading of the manuscript and
their valuable remarks.

Appendix

In what follows we summarize some notions and theorems related to multidimensional limit
theory of sums of iid random vectors, in particular some global and local limit theorems
and domains of attractions. These are typically not included in textbooks on probability, and
moreover, the pioneering work of Rvaceva on local theorems is not easily available.

Definition 12 Let {ξ(n)}n be a sequence of iid random vectors, with distribution function
F(x). Then if there are suitably chosen constants C(n) > 0, real vectors d(n) such that sn =∑n

k=1 ξk/C(n) − d(n) converges in distribution to a non-degenerate probability distribution
R(x), then

1. R is called a stable law;
2. and we say that F(x) belongs to the domain of attraction of R(x).

Our main interest in this paper is the domain of attraction of the Gaussian law, therefore
below we also restrict our attention to it.

Theorem 4.1 of [12] describes the domain of attraction of the normal law for random
vectors (below ′ means matrix transpose):

Theorem 4.1 [12] P belongs to the domain of attraction of the non-degenerate normal law
with characteristic function exp(−Q(t)/2) if and only if:
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(1)

R2
∫

|x|>R

dP (x)
/∫

|x|<R

x ′x dP (x) → 0 as R → ∞,

(2)

∫

|x|<R

(t ′x)2 dP (x)
/∫

|x|<R

(u′x)2 dP (x) → Q(t)/Q(u) as R → ∞,

for arbitrary t, u ∈ R
d .

Further if the jump distribution P of the random walk is B-type, then we define ηY ′
n (t) =

B−1
n Ynt for t = 0, 1

n
, 2

n
, . . . ,1 and take its piecewise linear extension. It is well-known that

ηY ′
n ⇒ W∑(t), a d-dimensional Wiener process (in fact, Skorohod proved that when the

CLT holds, then this functional central limit theorem holds too; for more details, see [13]
and [18], pp. 115–118). The covariance matrix

∑
is determined by Theorem 4.1 of [12].

Definition 13 As a special case, we call a B-type random variable (or random vector) L-type
if Bn = √

cn logn. (N. B.: this scaling is used in the weak limit of the planar, infinite-horizon
Lorentz-process; cf. [1, 17]). Now L(x) ∼ 2c logx. If we denote by S∗

n the sum of n iid one

dimensional L-type variables, then S∗
n√

cn logn

d→ N(0,1).

Finally we recall Rvaceva’s Local Limit Theorem, Theorem 6.1 of [12]:
Let {ξ(n)}n be a sequence of iid Z

p-valued random vectors and let P (x) = Pr(ξ(n) = x).
Let P (n; z) = Pr(s(n) = z), where s(n) = ξ(1) + · · · + ξ(n), and g(x) be the density of a
certain stable distribution G.

Theorem 6.1 of [12] In order that for some suitably chosen constant vectors a(n) and
positive constants B(n) the relation

R(n) = Bp(n)P (n; z) − g[[z − a(n)]/B(n)] → 0

hold uniformly with respect to z, it is necessary and sufficient that the distribution of ξ(n)

(1) Belong to the domain of attraction of G, and
(2) be a 1-lattice distribution.

The second condition is equivalent to each of the following:
(2′) The greatest common divisor of the volumes of p-dimensional simplexes a p + 1 ver-

tices of which lie at points with P (x) > 0 is 1/p!
(2′′) The lattice generated by all vectors (x − y) such that P (x) > 0 < P(y) coincides with

the lattice of all integral points of the p-dimensional space.

Remark 6 The series B(n) in this theorem may be different from C(n) in Definition 12.
If a two dimensional RW jumps independently along the axes, and it has a distribution
with finite second moment along one axis and an L-type distribution along the other, then
C(n) ∼ √

n logn and B(n) ∼ √
n log1/4 n.
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